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Efficient and reliable numerical techniques of high-order accuracy are presented for solving 
problems of steady viscous incompressible flow in the plane, and are used to obtain accurate 
solutions for the driven cavity. A solution is obtained at Reynolds number 10,000 on a 
180 x 180 grid. The numerical methods combine an efficient linear system solver, an adaptive 
Newton-like method for nonlinear systems, and a continuation procedure for following a 
branch of solutions over a range of Reynolds numbers. 

1. INTRODUCTION 

We shall describe a combination of numerical techniques for solving the steady 
plane incompressible Navier-Stokes equations and, as an illustration, use them to 
compute driven cavity flows. The individual techniques we employ are by no means 
new. But in the present combination, applied to the Navier-Stokes equations, they 
form a completely new solution procedure. In reliability, efficiency, and accuracy, 
this procedure compares very favorably with existing methods. 

Briefly, the numerical method is this: A fourth-order derivative scalar formulation 
in terms of the streamfunction I&, y, R) is used. Central differences on a uniform net 
then yield an approximation with truncation error expansion proceeding in powers of 
the mesh-width squared. One Richardson extrapolation then yields fourth-order 
accuracy. The nonlinear difference equations are solved by a sequence of Newton and 
chord iterations used in a “cost-effective” way. On very tine meshes the procedure 
uses only one evaluation and LU-factorization of the Jacobian matrix. 

The solution “curve” ~(x, y; R) versus R is followed using procedures developed 
by Keller [3]. The “influence coefficient” of w  with respect to the Reynolds number, 
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@(x, y; R)/aR is computed, at negligible cost, and used to predict ~(x, y; R + AR). 
With this continuation procedure large steps AR in Reynolds number can be taken. 
(The resulting initial guess is a sufficiently good approximation so that 
Newton-chord iteration converges rapidly.) These methods can be adapted to handle 
bifurcation or limit points in the solution curve without difficulty. 

The most time consuming part of the procedure is in the method for solving linear 
systems associated with the Newton iteration. We use an LU-factorization with 
partial pivoting (which our experiments have shown to be necessary). The code takes 
advantage of the variable bandwidth of the coefficient matrix. Attempts to improve 
the current method in any significant way must center on reducing the time and space 
required to solve these linear systems. Obviously, iterative methods should be con- 
sidered. 

Numerical methods for the Navier-Stokes equations are often tested on driven 
cavity flows. Until recently the available computational results were not accurate, 
even for Reynolds number 400; there are wide differences in the results reported by 
Tuann and Olson [7]. But our results agree very well with those of Winters and Cliffe 
[ 81 at Reynolds number 400 and with Ghia et al. [2] and Benjamin and Denny [ 1 ] at 
1000; the former obtained by a quite different numerical method. Thus, these results 
may prove useful for assessing the error in later computations. 

In the course of these computations we discovered that, for relatively coarse grids 
and high Reynolds numbers, the central difference schemes used have at least three 
solutions, not, as expected, one. The details of these computations and the spurious 
solutions will be reported elsewhere [6]. We later found that a slightly modified 
difference scheme seems to have only one solution [5]. 

2. CONTINUOUS AND DISCRETE FORMULATIONS 

We consider the plane steady laminar flow of an incompressible viscous fluid. The 
velocity components are represented in terms of a streamfunction ~(x, y) by 

4% Y) = ay v@, Y> v(x, Y) = -ax v4-G Y>. 

The continuity equation a,u + a,,~ = 0 is thus automatically satisfied. The vorticity, 
w(x, JJ) = a, u - a,, u, is now represented by 

4x, Y) = -46 Y). (2.1) 

Eliminating the pressure from the momentum equations yields the steady vorticity 
transport equation 

ua,w + va,w = (l/R) Aw. (2.2) 

Here R 3 UL/v is the Reynolds number, U the velocity scale, L the length scale, and 
v the kinematic viscosity of the fluid. In terms of the streamfunction, (2.2) becomes 

F(y/, R) = A$ - RG(y) = 0, (2.3a) 
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where 
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G(Y) = (8, ~)@a, w) - (a, wW, WI. (2.3b) 

We seek the flow in a square with rigid walls of length L, whose top wall slides 
with speed U, see Fig. 1. Thus, we require that (2.3) hold in the square 

Q=(O, 1)x(0, l), 

and impose the boundary conditions 

Y = 0, ayy= 1 on N=((x,y):y=l,O<x< 1); (2.4a) 

w  = 0, a,y=o on E=((x,y):x=l,O<y< 1); (2.4b) 

w= 0, a,y=o on S=((x,y):y=O,O<x< 1); (2.4~) 

w  = 0, a,y=o on W={(x,y):x=O,O<y< 1). (2.4d) 

We use a standard, second-order accurate difference approximation to (2.3) on a 
uniform grid with mesh spacing h = l/(J + 1). Specifically, the grid points (xi, yj) 
have coordinates 

xj = ih, yj = jh. 

Those grid points in the open square R we denote by 0,. Similarly those grid points 
on the open boundary segments N, E, S, W we denote by N,,, E,, S,, W,,. Note that 
there are J2 grid points in 0, and J grid points in each set Nh, E,, S,, and W,, . For 
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FIG. 1. Driven cavity. 
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any mesh function, say #ij, defined at each grid point we use the standard centered 
difference operators 

The solution &c,, yj) of (2.3), (2.4) at appropriate net points will be approximated 
by a mesh function, wij say, which we require to satisfy the difference analog of (2.3) 

F,(Wij,R)~A:,Wij--G,(ylij)=O, v(xi9Yj) E R,* (2Sa) 

Here we have introduced 

Gh(Wij) E (0; Wij)(DtAh Wij) - <DZ Wij)tDiA* V’ij)* (2.5b) 

Since (2Sa) is imposed only at points in Q,, there are J* equations. However, values 
of wrj on the boundary of Q and just exterior to it enter into these equations. The 
values on the boundary are known since by (2.4) we must set 

Wij = O9 v(Xi,yj)EN"+E,+S,+ W,* (2.6a) 

We also impose this condition at the four corners of the closed square d The values 
on appropriate meshpoints exterior to d are determined by imposing the analogs of 
the normal derivative conditions in (2.4) to get 

Wi,J+ 2 = wi,J f 2h 1 < i < J (from (2.4a)); 

I JtZj= wJ.jy 

Vi,-1 = Vi.13 

W-l,j= Wl,jy 

1 <j < J (from (2.4b)); 

1 < i <J (from (2.4~)); 

1 <j < J (from (2.4d)). 

Using (2.6) in (2.5) to eliminate mesh function values exterior to R,, we obtain J2 
equations in the J* unknowns vii for (xi, yj) E R,. 

These equations have quadratic nonlinearities and they are sparse. They each 
involve at most 13 unknowns arranged in the “star” indicated in Fig. 2. This is the 
standard star for centered second-order approximations of the biharmonic operator 
on a rectangular grid. This structure is not unknown in numerical studies of the plane 
Navier Stokes equations, but it is not the scheme usually employed (see, for example, 
l41)* 
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1 
FIG. 2. Finite-difference stencil. 

3. SOLUTION PROCEDURES 

Newton’s method applied to the continuous problem (2.3)-(2.4) proceeds from 
some sufficiently smooth initial guess, say t#“(x, y), that satisfies boundary 
conditions (2.4). Then the sequence { $“)(x, y)} is defined by 

I#“+ “(X, y) = $“)(x, y) + #‘“‘(x, Y), 

where the correction d’“‘(x, y) is the solution of the linearized problem about 
$“‘(x, y). That is d(“) must satisfy: 

L(w’“‘, R) @“‘(x1 y) = -F(iy’“‘, R), (x, Y) E 0, (3.la) 

#‘“‘(X,Y) = 0, q$(“)(x, y) = 0, (x, Y) E a. (3. lb) 

Here 8, is the outward normal derivative to L%2, the boundary of L& and L(s) is the 
linear differential operator 

L(v, R) 4 - A’$ - RG’(v) fl, 

where 

A numerical implementation of this procedure can be sought by using suitable 
difference approximations in (3.1). If centered difference are employed on the uniform 
net of Section 2, however, we get exactly the same procedure that results from 
employing Newton’s method directly on the algebraic problem (2.5 j(2.6)- 
“differencing” and “linearizing” commute in this case. 
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The direct application of Newton’s method to the nonlinear difference equations 
leads to a sequence of linear problems (with Yp’ = (I&“)) 

A(YP’, R) @p = -Fh(Yp’, R). (3.2) 

Here the 5’ x J2 Jacobian matrix is 

.  

Specifically, applied to any mesh function Qh, the Jacobian yields 

where 

(3.3a) 

GO’,J @h s (0; &)(@A, @h) + CD; @,)(%A, ul,> - (0: %)@;A, @h) 

- @J: @h)@;‘h yh). (3.3c) 

Of course it is required in (3.3) that values of $$” for (xi yj) exterior to R, be 
eliminated by using the homogeneous analog of (2.6). This is appropriate provided 
that the initial guess, Yi”, satisfies (2.6) exactly. The new iterate is then given by 

yl(h+ 1) _ y(v) h + @k”. 

If the difference equations have an isolated solution and ly(ho) is sufficiently close to 
this solution, then the Newton iterates converge quadratically to this solution. In 
Section 3.1 we describe a continuation method which insures accurate initial guesses 
as R is varied. In Section 3.2 we discuss the solution of the large sparse linear system 
(3.2). In Section 3.3 we show how a combination of Newton and chord iterates can 
be used to solve the nonlinear difference equations more efficiently than with 
Newton’s method alone. 

3.1 Continuation in Reynolds Number 

Suppose Y,,(R) satisfies (2.5~(2.6) on some R interval. Differentiating with 
respect to R yields, upon recalling (3.3) and Setting Yh(R) = a\Y,(R)/aR, 

A(y,AW, R) *,r’,(R) = --Gh(Ylh(R)). (3.4) 

We propose to solve (3.4) for eh(R) after using a Newton iteration to compute 
ul,(R). We then use, as an initial guess for Yh(R + AR), 

Yj,“(R + AR) E Yh(R) + AR eh(R). 

The combination of this extrapolation with Newton’s method is known as 
“Euler-Newton” continuation since te right-hand side of (3.4) is just one Euler step 

581/49/Z-10 
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in integrating !@#). Higher order extrapolation, using Y,, and !@,, at several points, 
is easily implemented, too. We have in fact employed a fourth order accurate 
procedure using two points for some steps. 

In this context, solving (3.4) is inexpensive. At the last Newton step, G,(Y,,(R)) 
was computed, and a triangular factorization of A was obtained. So solving (3.4) 
requires just one backsolve. 

3.2 Solution of Linear Systems 

We solve linear system (3.2) by Gaussian elimination with partial pivoting. With 
equations and unknowns ordered in the “natural” row-by-row sequence, the matrix A 
of (3.2) is J2 x J2 and banded with half-bandwidth 2J (i.e., ai, = 0 if (i -jj > 2J). 
Gaussian elimination computes a lower-triangular matrix L and an upper-triangular 
matrix U such that A = LU. Matrix L has ones on the diagonal and bandwidth 21, 
within the band it is dense. The nonzero elements of U lie in a band of width 
4J-partial pivoting caused the band to grow. Even though A itself has a uniformly 
shaped band, the nonzeros of U may lie in an irregularly shaped region. Figure 3 
shows the shapes of L and U. 

The worst possible situation is when, for all 1 Q k < (J2 - 2J), ak+U,k is chosen as 
the pivot element at the kth step. Then the band of U fills completely, the storage 
required for L and U is 6J3 + J2 locations, and the work for the facorization is 
sJ4 - ‘j”-J” + O(J2) operations (an operation being a multiplication together with the 
accompanying addition or subtraction). Using the natural ordering, a band-oriented 
algorithm that stores A (and overwrites it with L and rr) in a (6J + 1) x J2 array is 
suitable. 

Half the time and one-third of the space can be saved with a very slightly more 
complicated algorithm and the diagonal ordering of equations and unknowns. (For a 
5 x 5 grid the diagonal ordering is shown in Fig. 4; the associated matrix is shown in 
Fig. 5) To estimate the operation count with this or any other ordering we introduce 

c NONZEROS 
= OFA 

ADDITIONAL 

NONZEROS 

% OF U 
INTRODUCED 

BY PIVOTING 

FIG. 3. Zero structure of A, L, and Lr, n X n grid with natural ordering. 
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1 3 6 10 15 
7 

2 5 9 14 19 

4 a 13 18 22 

7 12 17 21 24 

11 16 20 23 25 

FIG. 4. Diagonal ordering of a 5 x 5 grid. 

the following indices which indicate the last nonzero elements in the rows and 
columns of A. The location of zero elements in A is required to be symmetric. 

For each 1 <j < Jz define “maximum row index in the jth column of A” as 

mrA(j) = max (i >j 1 a, z 0). 

By symmetry of the zero structure of A this is the same as the “maximum column 
index in the jth row of A” 

Observe that (as in Fig. 5) {mrA(j)} is a nondecreasing sequence when the diagonal 
ordering is used. Define the envelope of A, env(A), by 

env(A)= {(i,j)~j<i<mr,(j)ori,<j<mc,(i)}. 

SYMMETRIC 

FIG. 5. Zero structure of A; 5 x 5 rid with diagonal ordering. 
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The area included between the dark outline in Fig. 5 and its image in the diagonal is 
env(A). With no pivoting, Gaussian elimination preserves the envelope of a matrix: 
env(L) U env(U) = env(A). With partial pivoting, env(L) does not change, but env(U) 
can grow. The growth is limited to a region of essentially twice the size of the upper- 
triangular part of the envelope of A. From the definition above applied to U: 

m,(i) s max{j > i / uij # 0). 

Then 

mu(i) ( mcA(rA(i)) = mrA(mrA(i)). (3.5) 

The work W and storage S required for LU-decomposition are now easily found to 
be 

and 

W = C (mA(i) - i)(mc”(i) - i + 1) operations, 
i=l 

S= i (mrA(i)-i)+(mc,(i)-i+ 1) words 
i=l 

For our problem, with the diagonal ordering, we obtain the bounds 

W< 4J4 + +J3 + O(J*), 

and 

S < 4J2 + 4J2 + O(J*). 

Here we use (3.5) to bound m,(i), and use the correct values of mr,(i) for the 
diagonal ordering. 

Note that these are worst case estimates. In practice, substantially less till-in 
outside of env(A) occurs: the actual operation count is closer to the best possible 
case, 

W’ = 2 (mrA(i) - i)(mc,(i) - i + 1) < 2J4 + 0(J2) 
i=l 

with the diagonal ordering. 
Our code to solve (3.2) stores A in a one-dimensional array and overwrites it with 

L and U. The scheme is static; elements of A, L, and U are kept in predetermined 
locations. Thus, suEcient storage must be allocated to allow for worst case fill-in. 

The matrices are stored column by column. An integer array ja points to the 
beginning of each column. Another array holds mr,,,(i). The location of the diagonal 
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element of column j is, then, ja(j + 1) - (mrA(j) -j + 1). An array holds mu(i) 
which, unlike the first two, changes as pivoting modifies the shape of U. It is used to 
simplify the task of avoiding operations on elements outside env(v> for which storage 
has been allocated, but which remain zero. Finally, an array is used to keep track of 
the pivot sequence. Thus, space is needed for 45’ integers. 

Evidently, partial pivoting substantially increases the work and storage required to 
solve (3.2). To modify its effect, at the expense of accuracy, some type of threshold 
pivoting can be used. Thus, we acept an element already on the diagonal as a pivot if 
its magnitude is at worst a factor 0 times the element of maximum magnitude in the 
pivot column. We had no difftculty with 0 = 10 in our computations. In practice, 
very little pivoting is done. 

The inner loop of our code operates on columns of A as vectors. Table I contains 
CDC CYBER-203 timings for the LU decomposition and the backsolve. With a 
180 x 180 grid we reached the limit of the computer’s storage capabilities. Iterative 
methods for solving the Newton equations, with their modest storage requirements, 
my be a useful alternative. 

3.3 Newton-Chord Iteration 

We shall describe an adaptive combination of Newton and chord iterations for 
solving (2.5). Suppose we have computed an approximate solution Yp’, and the LU- 
decomposition of a previous Jacobian matrix 

A(!q’) = LU, p < v. 

TABLE I 

Grids Used 

Grid size 

(h = (J-l 1)-l) 
Unknowns 

(J - 2)2 

Storage 
for, L, u 
10’ words 

Typical 
factorization 

time, 
CPU-sets. 

(CDC STAR-loo) 

solve 
solve 
time, 

CPU-sets. 

70 4,624 

(1,891.) (29.8) (1.0) 

100 9,604 3,800 32.8 0.49 

(5,657) (74.6) (1.40) 

120 13,924 6,624 64.0 0.80 

140 19,044 10,815 115 1.19 

160 24,964 16,174 182 1.65 

180 31,684 22,679 269 2.15 

No&. Data in parentheses are for band solver with natural ordering. 
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We may choose between a Newton step 

yt+‘) = yy -A(yy)-l &(yy) E Ipup’ + @c/J’; 

or a chord step 

In this context, when A( y3 is a very large sparse matrix, a full Newton step can be 
many times more expensive than a chord step. On the other hand, the chord method 
is at best linerly convergent. Either method can fail to converge while the other 
method does converge. Therefore some effort should be expended in choosing the 
“better” method at each step. We determine the better method by estimating the 
correction per “cost” of computation. 

We assume that estimates of the costs of the methods are known. (Our code uses 
the computer’s clock to measure the CPU time required as the “cost.” We could 
actually use the dollar cost determined by the system cost algorithm if it were 
known.) Let: 

and 

$N E the cost of a Newton step 

SC s the cost of a chord step. 

We also need estimates of the factor by which the two alternatives reduce the error. 
At the vth iteration we let 

R,,, z error reduction factor of the chord method; 

R,,, s error reduction factor of Newton’s method. 

We use as an estimate of the norm of the error at the vth iteration 

EC”) = ll~h(~~‘)llm II ~~-“II,/II~*(~j-l))ll~. 

(With a slowly converging iteration, II @,,lla, is a poor estimate of error. In all cases of 
interest here, however, the iterations converge rapidly.) As shown below, our 
algorithm always computes at least one Newton iterate followed by a chord iterate. 
Thus we can compute E”’ to start. After a chord step is taken, we estimate 

4.u = II~~~~~‘~ll,/ll~~~~~-“~II,~ if the previous step 
was a Newton step, 

= II @pp-“II,/II @y)llco, if the previous step 
was a chord step. 

We use 

R,,, 2: K,E’“’ 
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where K, is a parameter chosen so that the estimate is reasonably accurate. Theory, 
of course, shows that, as convergence occurs, the error c$,“) = Y,, - Y$“’ in Newton’s 
method satisfies 

where K depends on /iA-‘(Y,Jll and the Lipschitz constant for A(Yh). So our K,, 
should approach K as E(“) + 0. 

Given the estimates, we.decide which method to use for the next step by applying 
several criteria in the following 

Iteration Algorithm: 

(1) The first step must be a Newton step. 

(2) If the last step was a Newton step, the next one must be a chord step. 

(3) If R,,, > 1, take a Newton step. 

(4) Estimate the number of chord steps it would take to finish as 

NC,, 3 ln(s/E’“‘)/ln(R,,,). 

Here E is the desired convergence tolerance. Take a chord step if %,NC,U ,< SN/3. 

(5) If (l)-(4) d o not apply, choose a Newton step if 

-3 In Rdfh + 2%) Z - ln R,,,/%, , 

otherwise take a chord step. 
The choice in Step 4 of the iteration algorithm simply chooses the chord method if 

the estimated cost to convergence via current chord iterates is less than one third the 
cost of one Newton step. The theoretically consistent estimate for the number of 
Newton steps to convergence is 

NN.” = 1ogAWWlW II d”’ II)). 

This could easily be less than 4, but our criterion still selects the chord method since 
one cannot do less than a full Newton step in actual computation. 

The last criterion in Step 5 of the iteration algorithm is based on “cost effec- 
tiveness.” The quantity (-ln RC,Y)/$C is an estimate of the number of correct solution 
bits per unit cost (i.e., time) given by the chord iteration. To be fair, Newton’s 
method has to be given credit for the accuracy one step provides and for the benefit 
of an improved factored Jacobian. Hence, we use the estimate shown, assuming that 
the Newton step will be followed by two equally effective chord steps, reducing the 
error by Ri at a cost of !lN + 2%,. This test is biased in favor of using Newton’s 
method since we do not like to ue chord iterates when R,,, is very near unity. 

In Table II we give “case histories” of two Newton-chord iterations. In the first, a 
single Newton step is required; the solution then is obtained by a few rapidly 
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TABLE11 

Two Examples of Newton-Chord Iteration 

Case la 

Iteration IlFll II @I/ Cumulative 
CPU-sets. 

N 0.46(-l) 
c 0.36(-2) 
c 0.42(-3) 
c 0.40(-4) 
c 0.86(-5) 
C 0.13(-S) 
C 0.27(-6) 
C 0.52(-7) 
C 0.88(-8 

final 0.15(-S) 

0.64(-2) 
0.53(-3) 
0.49(-4) 
0.57(-5) 
O.ll(-5) 
0.28(-6) 
0.80(-7) 
0.16(-7) 
0.21(-8) 

0 
63.9 
64.8 
65.6 
66.4 
67.2 
68.0 
68.9 
69.7 
70.5 

Case 2h 

Iteration IIFII 

N 0*20(-l) 
C 0.12(-2) 
C 0.13(-3) 
C 0.50(-4) 
N OSl(-4) 
C O.lO(-5) 
C 0.42(-7) 
C 0.22(-8) 
C 0.15(-9) 
C O.lO(-10) 
C 0.59(-12) 
C 0.45(-13) 

final 0.38(-13) 

II @II 

0.10(+0) 
0.28(-l) 
0.10(-l) 
0.13(-l) 
0.58(-2) 
0.28(-3) 
0.14(-4) 
0.12(-5) 
0.57(-7) 
0.24(-8) 
0.12(-9) 
0.80(-l 1) 

Cumulative 
CPU-sets. 

0 
34.9 
35.5 
36.0 
36.5 
71.5 
72.0 
72.5 
73.1 
73.6 
74.1 
74.7 
75.2 

“R=4000, J= 120. 
hR=lOO,J=lOO. 

converging chord steps. This is typical when tracing solution branches by 
continuation. In the second, after the first Newton and three chord steps, the chord 
iteration ceases to be effective. The code detects this (criterion 5 is the one that 
applies) and switches back to a Newton step. After this, the chord iterations work 
well enough. (A different convergence criterion was used in these two cases, hence the 
differing final residual norms.) 

Clearly, there is much room here for discussion and improvement. We make claims 
neither for the reliability of these estimates nor for the universal applicability or 
optimality of these heuristics. But it is clear that some form of heuristic adaptive 
control over Newton’s method for large sparse problems is necessary to make it 
competitively efficient. And when, as in this case, the work to solve a large sparse 
nonlinear problem is reduced to a single LU-decomposition, the combination becomes 
very attractive. Obviously other pseudo-Newton and updating techniques are 
suggested so that the determination of good cost-effective algorithms is a very 
complicated and open question. It deserves much more attention in the fluid 
dynamical context. 

4. COMPUTATIONAL RESULTS 

These computations were performed on a CDC STAR-100 (CYBER-203). 
Solutions were generated by the continuation procedures described above. The 
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R 
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3,000 
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1,000 

800 

750 

600 

500 

400 

300 

200 

100 

40 

20 

10 

1 

0 

40’ 

I 
100 

70’ 

I 

do 

------- 

CONTINUATION 
--- FAILED 

0 RESULT SHOWN 
IN SECTION 4 

ZERO INITIAL 
GUESS 

LINEAR 
PROBLEM 

-100 EULER STEP 

-100 CUBIC STEP 

4 

FIG. 6. The routes of continuation. 

“routes” taken are shown in Fig. 6. We began by solving problems for which an 
initial guess w  = 0 was sufficiently accurate. Successful Euler steps (linear 
extrapolation from one solution and derivative) and cubic steps, (cubic Hermite 
extrapolation from two solutions and derivatives) are shown by solid single and 
double arrows, respectively. Some unsuccessful continuation attempts are shown; the 
Newton-chord solver failed to converge with the initial guess provided by these steps. 

Table III summarizes the data concerning the locations and strengths of the 
primary vortex, secondary vortex 1 (in the SE corner) and secondary vortex 2 (in the 
SW corner). 

Concerning the accuracy of these results, we have no doubt that the data on the 
primary vortex are correct to well within 1% for all R Q 400. We reach this 
conclusion by noting the striking agreement between our results at R = 400 and those 
of Winters and Cliffe [8], obtained with entirely different discretizations. 

Solutions at R = 10,000 were obtained on four different grids (see Fig. 6); a plot of 



TABLE III 

Vortex Centers: Location, Streamfunction, and Vorticity 

R 

1 
40 

100 
400 

loo0 
4000 

10000 

1 
40 

100 
400 

1000 
4000 

loo00 

1 
40 

100 
400 

1000 
4000 

loo00 

J X 
- 

Y w w 

121 0.50000 0.76667 -0.10006 -3.23200 
121 0.56667 0.75833 -0.10060 -3.22100 
121 0.61667 0.74167 -0.10330 -3.18200 
141 0.55714 0.60714 -0.11297 -2.28100 
141 0.52857 0.56429 -0.11603 -2.02600 
161 0.51875 0.53750 -0.11237 -1.80500 
180 0.51397 0.53073 -0.10284 -1.62200 

121 0.96667 0.03333 0.2470E - 05 0.9900E - 02 
121 0.95833 0.03333 0.3770E - 05 O.l150E-01 
121 0.94167 0.05000 0.1320E - 04 0.2550E - 01 
141 0.88571 0.11429 0.6440E - 03 0.3940E 00 
141 0.86429 0.10714 0.1700E-02 0.9990E 00 
161 0.81875 0.07500 0.28OOE - 02 0.2145E 01 
180 0.78771 0.06 145 0.2960E - 02 0.3031E 01 

121 0.03333 
121 0.03333 
121 0.03333 
141 0.05000 
141 0.08571 
161 0.08 125 
180 

Primary Vortex 

Secondary vortex 1 

Secondary Vortex 2 

0.3333 0.244OOE - 05 O.lOOOOE - 01 
0.03333 0.201OOE - 05 O.l1500E-01 
0.02500 0.205OOE - 05 0.798OOE - 02 
0.04286 0.145OOE - 04 0.471OOE - 01 
0.07143 0.217OOE - 03 0.302OOE 00 
0.11875 O.l12OOE-02 0.10670E 01 

TABLE IV 

Vortex Center Data with Richardson Extrapolation 

J --w Iv’ w2 y’ J --0 w’ w2 w’ 

R = 10,000 100 0.074188 100 1.1891 
130 0.088576 0.10919 130 1.4062 1.7173 
160 0.098315 0.11707 0.12205 160 1.5539 1.8384 1.9151 
180 0.10284 0.11976 0.12266 0.12292 180 1.6225 1.8790 1.9229 1.9263 

R =4000 100 0.098069 100 1.5911 
120 0.10501 0.12061 120 1.6949 1.9282 
161 0.11237 0.12148 0.12202 161 1.8051 1.9415 1.9498 

R=lOOO 100 0.11315 100 1.9863 
120 0.11492 0.11890 120 2.0112 2.0672 
141 0.11603 0.11892 0.11894 14 1 2.0268 2.0674 2.0677 

R=400 100 0.11195 100 2.2726 
141 0.11297 0.11399 141 2.2812 2.2898 

324 
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FIG. 7. Streamlines: (a) R = 400, (b) R = 1,ooO. 
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FIG. 8. Streamlines: (a) R = 4,000, (b) R = 10,000. 
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FIG. 9. Equivorticity lines: (a) R = 400, (b) R = 1,000. 
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FIG. 10. Equivorticity lines: (a) R = 4,000, (b) R = 10,000. 
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11 I&, versus h* shows that the points lie close to a straight line. Thus it is reasonable 
to assume that the computed values have asymptotic error expansions of the form 

w(x,Yj)= Vij + Cth2 + CLh4 + “‘7 (4.la) 

dW(xi,yj)=dhWij+dth*+difih4+ *a*. (4. lb) 

This is easily justified theoretically for smooth solutions (i.e., if the corner 
singularities are neglected). In any event we have used repeated Richardson 
extrapolation to obtain “hight-order” accurate approximations. This was done for 
R = 400, 1000, 4000, and 10,000; the extrapolated values are shown in Table IV. The 
column labelled X/ (respectvely w’) gives the results of Richardson extrapolation of 

1 

Y  

.25 

.:: 

0 x 1 

FIG. Il. Velocity profiles for u, R = 1,000. 
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the values in the previous column. If the expansions (4.1) are valid, then these are 
W ‘o+ “)-accurate estimates. The rapid convergence of the extrapolated values 
indicates that (4.1) does hold (at least away from the corners). Our data on the 
secondary vortices are less reliable, due possibly to these corner singularities and/or 
roundoff errors. Figures 7-14 show the streamlines, the lines of equal vorticity, and 
velocity profiles for R = 400, 1000, 4000, and 10,000. (See also Table V.) 

The streamline plots show the development of a central, nearly circular vortex, 
with bottom secondary vortices that do not shrink a R grows. At Reynolds number 
4000 the third secondary vortex, near the upstream top corner, is present in the data. 
At 10,000, a tertiary vortex in the bottom upstream appears. This is consistent with 
the analysis of Wood [9]. 

FIG. 12. Velocity profiles for u, R = 1,000. 



DRIVEN CAVITY FLOWS 

0 x 1 

FIG. 13. Velocity profiles for u, R = 10,000. 

The equivorticity plots show a central region of nearly constant vorticity 
surrounded by a nearly circular, thin region of highly oscillatory vorticity. Mesh 
frequency oscillations near the downstream top corner are evident at Reynolds 
number 10,000. These are to be expected in centered schemes with insufficiently fine 
mesh to resolve the boundary layers. They could easily be eliminated by filtering 
(averaging) the data. Although smooth data would result, their accuracy as approx- 
imations to the actual solutions of the Navier-Stokes equations is not completely 
clear. Indeed, it is comforting to know that the scheme tells us, by means of the mesh 
frequency oscillations, when we have exceeded the resolution that id possible with our 
current grid. 

The velocity profiles each show the size of a velocity component along five lines 
through the cavity. The u plots are along horizontal lines ad the u plots along vertical 
lines. The scale is such that a displacement of the curve from its axis by 50% of the 
square’s side corresponds to a velocity of one. 
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FIG. 14. Velocity profiles for u, R = 10,000. 

TABLE V 

Legend for Figures 7-10: Contour line values 

Streamfunction Vorticity 

A -0.11 H -0.00001 A -5 
B -0.10 H O.OOOOO1 B -3 
c -0.08 J 0.00001 c -1 
D -0.06 K 0.0001 D 1 
E -0.04 L 0.001 E 3 
F -0.02 M 0.002 F 5 
G -0.0 1 
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Concerning the cost of these computations, one can estimate from Table I and 
Fig. 6 that the total CPU time required to obtain the “ultimate” solution at R = lo4 
and J = 180 was no more than 900 seconds. 
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